On Eigenvalues of the Schrödinger Operator with a Complex-valued Polynomial Potential

نویسنده

  • Per Alexandersson
چکیده

In this paper, we generalize a recent result of A. Eremenko and A. Gabrielov on irreducibility of the spectral discriminant for the Schrödinger equation with quartic potentials. We consider the eigenvalue problem with a complex-valued polynomial potential of arbitrary degree d and show that the spectral determinant of this problem is connected and irreducible. In other words, every eigenvalue can be reached from any other by analytic continuation. We also prove connectedness of the parameter spaces of the potentials that admit eigenfunctions satisfying k > 2 boundary conditions, except for the case d is even and k = d/2. In the latter case, connected components of the parameter space are distinguished by the number of zeros of the eigenfunctions. CONTENTS

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimates for Eigenvalues of the Schrödinger Operator with a Complex Potential

We study the distribution of eigenvalues of the Schrödinger operator with a complex valued potential V . We prove that if |V | decays faster than the Coulomb potential, then all eigenvalues are in a disc of a finite radius.

متن کامل

Schrödinger operators with n positive eigenvalues: an explicit construction involving complex valued potentials

An explicit construction is provided for embedding n positive eigenvalues in the spectrum of a Schrödinger operator on the half-line with a Dirichlet boundary condition at the origin. The resulting potential is of von Neumann-Wigner type, but can be real valued as well as complex valued.

متن کامل

On the Number of Eigenvalues of the Discrete One-dimensional Schrödinger Operator with a Complex Potential

We study the eigenvalues of the discrete Schrödinger operator with a complex potential. We obtain bounds on the total number of eigenvalues in the case where V decays exponentially at infinity.

متن کامل

Number of Eigenvalues for a Class of Non-selfadjoint Schrödinger Operators

In this article, we prove the finiteness of the number of eigenvalues for a class of Schrödinger operators H = −∆ + V (x) with a complex-valued potential V (x) on R, n ≥ 2. If IV is sufficiently small, IV ≤ 0 and IV 6= 0, we show that N(V ) = N(RV )+k, where k is the multiplicity of the zero resonance of the selfadjoint operator−∆+RV and N(W ) the number of eigenvalues of −∆+W , counted accordi...

متن کامل

Quasicompact and Riesz unital endomorphisms of real Lipschitz algebras of complex-valued functions

We first show that a bounded linear operator $ T $ on a real Banach space $ E $ is quasicompact (Riesz, respectively) if and only if $T': E_{mathbb{C}}longrightarrow E_{mathbb{C}}$ is quasicompact  (Riesz, respectively), where the complex Banach space $E_{mathbb{C}}$ is a suitable complexification of $E$ and $T'$ is the complex linear operator on $E_{mathbb{C}}$ associated with $T$. Next, we pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010